Bilimsel Raporlar
2007- The Hearing Ear and The Listening Brain- An Evaluation of Berard Auditory Integration Training in Children/Students with Concentration Problems and Learning Difficulties
Britta Alin Åkerman, Professor in Education Lars B Persson, Berard’s Method Centers
Hedef:
Öğrenme ve konsantrasyon sorunu olan ve ayrıca Özel Eğitime giden öğrencilerin Berard Eğitimi aldıktan sonraki gelişim ve akademik performanslarını izlemek. 

Stokholm Maria Gamlastan Belediyesine dahil 6 okul seçildi. Biri otizmli okul öğrencileri diğerleri ise normal okula giden ve hafif düzeyde özel eğitime (disleksi/hareket) ihtiyacı olan öğrenciler, seçildi. 

Özel Eğitime ihtiyacı olan aynı yaştaki öğrenciler ikişer guruplara ayrıldı. Grup (I)’e Berard AIT Uygulaması yapıldı. Diğer grup (C), placebo etkisi için değerlendirildi. Otizmli öğrencilerin grupları da control gruplu olarak aynı şekilde düzenlendi. 

4 kez değerlendirme yapıldı. (Berard öncesi- 3 ay sonra- 6 ay sonra- 9 ay sonra) Bu değerlendirmelerde kullanılan anketleri öğrencinin veliler ve öğretmenleri cevapladı. 

Ayrıca Berard İşitsel Eşik Testi her öğrenciye yapıldı. 

Velilerden gelen sonuç:
I Grubunda dinleme, dikkatini odaklama, komutlara uyma, ekip çalışması ve itaat etmede gelişim görüldü. 
Yazıların düzelmesi, ders çalışmaya başlama süresinin hızlanması, uzun süreli hafızanın gelişimi, özgüven artışı, ne istediğinin farkındalığı, kararlılık, yatma zamanı sorunlarının azalması ve arkadaşlarıyla sorunların azalması gözlemlendi. 
Öğretmenlerden gelen sonuç: 
Okul çalışmalarında pozitif ilerleme, sözel konuları dinlemede ilerleme, dikkati yoğunlaştırmada ilerleme, strese karşı dayanıklılığın artması ile okulda uyum sağlama ve okuldan keyif alma verileri. 
Otizmli öğrencilerin velilerinden gelen sonuç:
Dinleme ve sözel iletişimin artması, odaklanma ve odaklanmayı sürdürmek ve sözel komutlara dikkatini verebilmek. Bir konu ile meşgulken, odaklanmyı aynı anda başka bir konuyla da sürdürebilmek. 
Otizmli öğrencilerin öğretmenlerinden gelen sonuç: 
Okuma ve uzun süreli hafıza gelişimi
Berard AIT İşitsel Test sonucu: 
Sese karşı aşırı duyarlılık, bazı frekanslara olan aşırı duyarlılık azalmıştır. Sol kulak baskın dinleme olan öğrencilerde Berard AIT sonrası denge sağ kulağa çevrildi. 
Önemli hedef: 
Kaynaştırma ve az yardıma ihtiyacı olan öğrencileri tamamen normal eğitime geçirebilmek. 
Önemli hedef sonucu:
1 yıl 9 ay sonraki takipte %34 normal sınıflarda eğitim görmeye başladı. 

Berard AIT uzun vadeli etkileri – 1 yıl 9 ay sonrası takibinde

2004, İsveç Stokholm’de  akademik performansını yükseltmek isteyen 44 öğrenci ile yapılan açık klinik araştırma. (Berard’s Method Center) 
Lars B  Persson
Hedef: 
Öğrencilerin akademik performansı ve bu performansı destekleyen yan konuların gelişime katkısı var mı?
Uygulama:
12 konuda 1-10 arası veli ve öğrencilerin değerlendirmeleri ile Berard AIT Öncesi ve Sonrası değerlendirmeleri. Berard İşitsel Eşik testi (Berard AIT Öncesi- 10 dinleti sonrası-20 dinleti bitimi-3 ay sonrası-6 ay sonrası)
Sonuç: 
Akademik performans artışı %71,6. Akademik performansın gelişimi yanısıra; derse ve okula karşı pozitif bir algı gelişimi görüldü. Okul hayatı, eğlenceli ve ilgi çekici hale geldi. Derse katılım ve dersi dinleme yanısıra dersler üzerindeki kontrolu ve özel hayatında da kontrolun gerçekleştiği, değerlendirmelerde rapor edildi.



Seri 1: Berard AIT Öncesi    Seri 2: Berard AIT Sonrası 

2001, Hiperaktivite (109 kişi) SallyBrockett(IDEA Training Center) USA
Hiperaktivite durumunda etkiyi görmek için ABC değerlendirmesine göre (AberrantBehaviorChecklist) değerlendirme yapıldı. Açık klinik araştırma.
Linkindeki grafikte, 1 ay sonrasından giderek 9 aya uzanan zamanda hiperaktivitenin azalışını göstermektedir.
Hiperaktivitenin yok oluşu yanısıra yarıdan fazla çocuk başka konularda ciddi pozitif ilerlemeler gösterdi. % 55 ilerleme kaydedildi.
www.ideatrainingcenter.com

2001, Dikkat Dağınıklığı (48 çocuk) SallyBrockett(IDEA Training Center) USA 
(The Attention Deficit Disorders Evaluation Scale) ADD ölçüsüne göre Berard AIT Uygulamasından sonraki gelişim linkindeki grafikte görülmektedir. 
Hızlı değişimler ilk 3 ayda görülmüş olup, yüzde olarak ortalama  %24 bir gelişim kaydedilmiştir. Çocukların yarısı daha üstün bir gelişim gösterirken diğer  yarısında daha düşük bir gelişim kaydetmiştir. 
www.ideatrainingcenter.com


2001, Duyusal Bozukluk (14 çocuk) SallyBrockett (İDEA Training Center) USA 
2001 yılında, SallyBrockett(IDEA Training Center) değişik tanıları olan 14 çocuk ile bir çalışma yaptı. Araştırma, veliler tarafından söylenen gelişimleri izlemek ve raporlamak amacını taşıyordu. Çocuklara Berard AIT Programı uygulandı. Aileler değerlendirme listesini Berard AIT öncesi, ve 1-3-6 ay sonrası tekrar değerlendirdi. 
Değerlendirme listesinde şu konular yer aldı: Duyusal algı bozuklukları,  denge bozuklukları, dokunulmak istenmemesi, kendini kontrol edebilmesi, oyun sırasında ekip çalışmasına katılabilmek vs… 6 aylık gelişim sonucunda %79 başarı görülmüştür.
www.ideatrainingcenter.com



2000-2001, İŞİTMENİN KALİTESİ İLE ÖĞRENME BECERİSİ ARASINDAKİ BAĞMARIA VEGA, (İSPANYA )
158 öğrenci katılımında açık klinik bir araştırma
Hedef:
Odyolojik test sonuçlarına göre öğrencilerin akademik performanslarının düşük ya da yüksek olduğunu anlayabilmek.  
Uygulama:
158 öğrencinin sınıftaki durumları ve akademik performansları hakkında bilgi alınmadan odyolog tarafından her öğrenciye işitsel test yapılıyor. 
Sonuç:
İişitsel test sonuçlarına göre isimleriyle hangi öğrencilerin sınıfta başarılı olduğu görülebiliyor. Düşük performanslı öğrencilerin hangileri olduğu odyolojik teste göre anlaşılıyor. Tahmin etmede başarı sonucu %92,9 ila %94,7 arasında. bu da işitsel algı ile öğrenme arasındaki bağı güçlü bir şekilde ortaya koyuyor.

1999, Pilot study: Effects of Berard AIT on 10 children with ADHD, Prof Wayne Kirby (USA, North Carolina) 
PROF. KIRBY tarafından kontrol gruplu bir araştırma, 1999
Konu:
Dürtü ve dikkat eksikliği 
Sonuç:
3 ay sonra kontrol grubu aynı seviyede kalmış işitsel algı eğitimi alan çocuklar hatalarını 37 birimden 5’e indirmiştir.

2000, 5 yıl AIT VOLUNTAS Raporu, Dr Roland De Beuckelear, (Antwerp, Belçika)
 
Antwerp 2000 IABP Konferansı’nda sunulan rapor. Personel ve veliler ile yapılan bir çalışma:VOLUNTAS Rehabilitasyon Merkezi Antwerp, Belçika’dan raporlarla açık klinik bir çalışma. 17 kişi; karışık yaş, normal, özel okula giden grup, 3-25 yaş, ya da kurum katıldı. Otizm ile 7 kişi ve autistiform (otistik benzeri) belirtileri veya yüksek işlevli bireylerden katılan 10 kişi.
Aşağıdaki çizelgede Berard AIT önce ve 3 ay sonraki değerlendirme görülmektedir.


2007 SPOR RAPORU (Açık Klinik Proje)
Sporla ilgilenen çocuk ve gençlerle  birlikte Spor alanında Peak Performans değerini ölçmek için Stokholm Berard Metodu Merkezi’nde (Berard’sMethod Center i Stockholm) bir proje yapılmıştır.
Projeye 16 erkek ve 14 kız katılmış olup katılımcılar Nacka İlköğretim ve Nacka Lisesi öğrencileridir. 14-16 yaş arası olan bu öğrencilere 10 ayrı gelişim bölgesinde, Berard AIT eğitimi öncesi ve eğitimden 3 ay sonra testler uygulanarak gelişim takip edilmiştir.
Değerlendirme alanı  ve  testler:
El-Göz Koordinesi ve Hızlı Algılama – MacKenzieHandEyeCoordination Testi
Tepki Hızı – MacKenzieRulerDrop Testi
Denge – MacKenzieStandingStork Testi
Dayanıklık – Cooper VO2 Max Testi
Çeviklik – MacKenzieQuickFeet Testi
Güç- Bacak 1 – SargentJump Testi
Güç – Bacak 2 – MacKenzieStandingLongJump Test
Esneklik – MacKenzie Sit and Reach Test
Stres Yönetimi- Kendi ve aile yorumu
Spor yarışlarıyla ilgili psikolojik testler – Kendi ve aile yorumu
1- El-Göz Koordinesi ve Hızlı Algılama , MacKenzie Hand Eye Coordination Test:
Duvara atılan tenis toplarını yakalamak,30 saniyede sağ ve sol eli değiştirerek kaç top atıldığı.
Sonuç (ortalama):
BerardAIT’den önce: 
Erkekler: 30 saniyede 26  top                         
Kızlar: 30 saniyede 27 top
BerardAIT’den 3 ay sonra:
Erkekler:  30 saniyede 33 top             
Kızlar 30 saniyede 33 top
Gelişim:
Erkeklerde: 27%     
Kızlarda: 26%          
Toplam: 26.5%  

2- Tepki Hızı, MacKenzieRulerDrop Test:
Bir kişinin düşürdüğü cetveli  baş parmak ile işaret parmağı arasında 3 kez tutabilme santimetre ortalaması.
Sonuç (ortalama):
BerardAIT’den önce: 
Erkekler. 17,8 cm                      
Kızlar: 16,9 cm
BerardAIT’den 3 ay sonra:
Erkekler: 13,9 cm          
Kızlar:  13,1 cm
Gelişim:
Erkekler:  22%    
Kızlar: 23%                      
Toplam: 22.5%

3- Denge ve Koordinasyon, MacKenzieStandingStork Test:
Gözler kapalı tek ayak üzerinde ne kadar zaman durabilir ve sağ/sol ayak değiştirebilir.
Her ayak için 2 deneme
Sonuç (ortalama):
BerardAIT’den önce: 
Erkekler. 24 saniye                     
Kızlar: 28 saniye
BerardAIT’den 3 ay sonra:
Erkekler: 31 saniye         
Kızlar: 36 saniye  
Gelişim:
Erkekler:  29%    
Kızlar: 28%                      
Toplam: 28.5%

4- Dayanıklık, Cooper VO2 Max Test:
Kişi  400 metrelik koşuyolunda 12 dakikada kaç metre koşabilir. 
Sonuç (ortalama):
BerardAIT’den önce: 
Erkekler. 1900 m                    
Kızlar: 1800 m
BerardAIT’den 3 ay sonra:
Erkekler: 2394 m        
Kızlar: 2232 m
Gelişim:
Erkekler: 26%    
Kızlar: 24%                      
Toplam: 25%
 
5- Çeviklik, MacKenzieQuickFeet Test:
Yere konulan ip merdivenin  arasındaki tahtalara değmeden çok hızlı koşmak.
En iyi 2 deneme ortalaması alınır.
Sonuç (ortalama):
BerardAIT’den önce: 
Erkekler. 4,3 sn                    
Kızlar: 4,9 sn
BerardAIT’den 3 ay sonra:
Erkekler: 3,4 sn      
Kızlar: 3,9 sn
Gelişim:
Erkekler: 21%    
Kızlar: 19%                      
Toplam: 20%
 
6- Güç- Bacak 1, SargentJump Test (VertikalJump):
Duvarda ulaşılabilen en yüksek yere hoplayarak değme. 3 atlayış ortalaması.
Sonuç (ortalama):
BerardAIT’den önce: 
Erkekler. 52 cm                    
Kızlar: 46 cm
BerardAIT’den 3 ay sonra:
Erkekler: 59 cm     
Kızlar: 53 cm
Gelişim:
Erkekler: 14%    
Kızlar: 15%                      
Toplam: 14,5%


7- Güç – Bacak 2, MacKenzieStandingLongJump Test (HorizontalJump):
Kumda en uzun atlama. En iyi 3 deneme ortalaması.
Sonuç (ortalama):
BerardAIT’den önce: 
Erkekler. 2,01 m                   
Kızlar: 1,61 m
BerardAIT’den 3 ay sonra:
Erkekler: 2,29 m   
Kızlar: 1,80 m
Gelişim:
Erkekler: 14%    
Kızlar: 19%                      
Toplam: 17% 

8- Esneklik, MacKenzie Sit and Reach Test:
Üzerinde cetvel bulunan bir kutuya yerde oturarak cetvelde en uzak cm’ye dokunmak.
En iyi 3 deneme ortalaması
Sonuç (ortalama):
BerardAIT’den önce: 
Erkekler. 8,1 cm                   
Kızlar: 8,5 cm
BerardAIT’den 3 ay sonra:
Erkekler: 10,1 cm
Kızlar: 10,7 cm
Gelişim:
Erkekler: 25%    
Kızlar: 26%                      
Toplam: 25,5%
 
9- Stres Yönetimi, Stres Yönetimi:
Gözlemle 0-10 arası değerlendirme.   0 = “Çok stresli”,  10 = “Stresle iyi baş eder”
Sonuç (ortalama):
BerardAIT’den önce: 
Erkekler. 4,5 puan                  
Kızlar: 4,9 puan
BerardAIT’den 3 ay sonra:
Erkekler: 6,2 puan  
Kızlar: 6,7 puan
Gelişim:
Erkekler: 42%    
Kızlar: 36%                      
Toplam: 39%

10- Spor Yarışlarıyla İlgili Psikolojik Testler, Martens, R et al. SportCompetitionAnxiety Test:
3 seçenekli kendini değerlendirme testi. (1-2-3)
Sonuç (ortalama):
BerardAIT’den önce: 
Erkekler. 27 puan                  
Kızlar: 29 puan
BerardAIT’den 3 ay sonra:
Erkekler: 38 puan  
Kızlar: 39 puan
Gelişim:
Erkekler: 39%    
Kızlar: 35%                      
Toplam: 37%


2014, Berard Auditory Integration Training: Behavior Changes Related to Sensory Modulation (http://www.la-press.com,  Autism Insights)
Sally S. Brockett1, Nancy K. Lawton-Shirley2 andJudithGiencke Kimball

1- IDEA Training Center (InnovativeDevelopmentsforEducationalAchievement, Inc.), North Haven, CT, USA. 
2- Points of Stillness, LLC, USA. 
3-Department of OccupationalTherapy, University of New England, Portland, ME, USA.

 

Berard İsitsel Algı Eğitimi: 
Algı modüle edildikten sonraki davranışsal değişiklikler   
Bu projenin amacı: Eğer davranışlar işitsel algı ile bağlantı ise,  10 gün (günde 2 kez) Berard AIT uygulamasından sonra olumlu değişiklikler görülür.
Çalışma: 54 engelli öğrenci (34 otizmli), 3-10 yaş grubunda Berard AIT aldıktan sonra takibe alındı. Öğrencilere, 30 dakika ve günde 2 defa olarak 10 gün peşpeşe Berard  AIT uygulandı. Dinletiler arasında üç saat mola verildi. Uygulamadan 1 hafta önce, 1 ay, 3 ay ve 6 ay sonra  yapılan testlerle veriler kayda geçirildi.
Sonuç: 
Varyans analizi (ANOVA) ShortSensoryProfıle (SSP) nin toplam test sayı ve kişisel faktör bölümü gelişimi birince testten, son test kadar gelişim gösterdiği görüldü. (P < 0.01)
Davranışsal problemlerin (ABC)–AberrantBehaviorChecklist değerlerine göre, beş maddede olumlu yönde düzenlendiği görüldü.(P<0.01)
Hyperactivity 29% reducedwith P < 0.01 significance
Irritability 29% reduced “
Inappropriatespeech 27% reduced “
Stereotypy 40% reduced “
Lethargy 34% reduced “

Hiperaktivite %29 azaltılmış P< 0.01 (istatistiksel olarak anlamlı değişiklikler)
Sınırlılık % 29 “azaltılmış “
Anlamsız konuşma % 27 “azaltılmış “
Stereotipi % 40 “azaltılmış “
Tembellik % 34 “azaltılmış “

Gelişim genellikle bir ay içinde ve eğitim den üç ve altı ay sonra kendini gösterdi.

ABC ile SSP faktörlerinin bağlantısı şunu gösteriyor: SSP ve ABC ile ölçülme sonucunda dört davranışsal faktörlerin, gelişimde, aynı sonuca ulaştığı görüldü.
Sonuç: 
SSP ile ABC arasındaki bağlantıyı gösteren bu çalışma, genel geçerliği olacağını göstermese de projede Berard AIT eğitimi alan bu çocuklarda gelişim görülmüştür.

Autism Insights Berard Auditory Integration Training: 
Behavior Changes Related to Sensory Modulation
Sally S. Brockett1, Nancy K. Lawton-Shirley2 and Judith Giencke Kimball3
1- IDEA Training Center (Innovative Developments for Educational Achievement, Inc.), North Haven, CT, USA. 
2- Points of Stillness, LLC, USA.
3- Department of Occupational Therapy, University of New England, Portland, ME, USA. ABSTRACT
OBJECTIVE: The purpose of this study was to determine if behaviors specifically related to sensory modulation showed positive changes following
10 days of Berard auditory integration training (AIT).
METHOD: Cases of 54 children with disabilities (34 with autism), ages 3–10 years, who received Berard AIT, were reviewed. Children received 30 minutes
of training twice a day, separated by a minimum of three hours, for 10 consecutive days. Data were collected within one week before intervention and
at one, three, and six months post-intervention.
RESULTS: Analysis of variance (ANOVA) indicated that Short Sensory Profile (SSP) total test scores and individual factor sections improved from pretest
to post-test (P  0.01). Behavioral problems reduced on all five factors of the Aberrant Behavior Checklist (ABC) (P  0.01). Most changes occurred
within one month of intervention and maintained at three and six months. Correlations among the ABC and SSP factors indicate that sensory modulation
as measured by the SSP is a significant contributor to four of the behavioral factors measured by the ABC.
CONCLUSIONS: Although causality cannot be determined using this study design, scores on the SSP and ABC improved in a group of children who received Berard AIT.


1991, Pilot proje / Dr. Rimland & Edelson – Autism Research Institute
Double blind proje, (Çift kör deney) 17 otistik, yaş arası: 4-21, Deney ve kontrol gruplarına kişiler rastgele ayrıldı.
Sonuç: 
İstatistiksel olarak anlamlı değişiklikler ABC’de (Anormal Davranış Kontrol listesi)

Fig 1. Sayı farkı ABC’de AİT ve kontrol grupları zaman çizlgesi (2 hafta,1 ay, 2 ay, 3 ay)
Daha düşük sayı daha az sorun demek.
Irritability t (7) = 2.524 (P< .05)
/Sinirlilik/
Stereotypy t (7) = 4.352 (P< .01)
/Stereotipi/
Hyperactivity t (7) = 2.113 (P< .05)
/Hiperaktivite/
Excessive speech t (7) = 3.871 (P< .01)
/Gereksiz (boş) konuşma/
/İstatistiksel olarak anlamlı değişiklikler FAPD’de /Fisherin İşitsel Problemi Kontrol listesi)

/Fig 1. Sayı farkı FAPC’de AİT ve kontrol grupları zaman olarak (2 hafta,1 ay, 2 ay, 3 ay)
Daha düşük sayı daha az sorun demek.
“cannot attend to auditory stimuli more than a seconds” t (7) = 2.04 (P< .05)
/İşitsel stimuli dikkat etme bir saniye dan fazla bilmez/İşitsel dikkati bir saniyeden fazla sürmüyor.
“does not remember simple routine things from day to day” t (7) = 2.04 ( P< .05)
/Basit günlük rutinleri ertesi gün unutuyor/
“frequently misunderstands what is said” t (7) = 2.393 (P< .05)
/Genellikle söylenleri yanlış anlıyor/
“has a short attention span “ t (7) = 2.648 (P< .05)
/Kısa bir dikkat süresi vardır/
/İstatistiksel olarak anlamlı değişiklikler/
Dinleme ve anlama
Işitsel hafıza ve anlama /
Işitsel uyaranlara dikkat artışı /
Rutin şeyleri ertesi gün hatırlama / bellek


1994, DR BERNARD RİMLAND&STEPHEN EDELSON, AUTISM RESEARCH INSTITUTEUSA, S.DİEGO,
/American Journal of Speech-Language Pathology, 1994, 5, 16-24/
(Publ Journal of American Speech-Language-Hearing Assoc May 1994)Project 1994 Drs Rimland & Edelson – Autism Research Institute
Open clinical study, 445 autistic subjects randomly assigned to three different AIT devices.
Significant changes occurred in sound sensitivity.
ABC (Aberrant Behavior Checklist),CRS (Conners´ Rating Scale) and FAPC Fisher´s Auditory Problems Checklist) checklist were completed by parents.
Significant reduction in problem behaviors also occurred
Açık klinik çalışma, rastgele üç farklı AIT cihazlara atanan 445 otistik kişiler.
İstatistiksel olarak anlamlı değişiklikler: Sese karşı aşırı duyarlılığın önemli derecede azalması.
ABC, CRS ve FAPC kontrol listesi veliler tarafından tamamlanmıştır.
İstatistiksel olarak anlamlı değişiklikler: Sorun yaşanan davranışlarda anlamlı derecede düşüş de görüldü.

1999, Dr. Rimland & Edelson : Auditory Integration Training – A Double-Blind Study of Behavioral, Electrophysiological Effects in People with Autism – Autism Research Institute
(publ “ Focus on Autism and Other Developmental Disabilities”, vol 14/2 June 1999)
19 autistic subject randomly assigned to I (intervention group –listening to modulated music) and C (control group- same music but unprocessed)(placebo).
Significant behavioral changes occurred in the I-group according to the ABC-list.
Electrophysiological: 3 subjects in I-group and 2 in C-group were able to go through the brain imaging (P300 ERP)-P 300 Even Related Potential task. Dramatic improvement occurred 3 months post AIT in the I-group in their auditory P300 ERP, no improvement was seen in the C-group (placebo).
19 otizmli kişi 2 gruba rastgele seçilmiş.
I grubu işlenmiş müziği dinlemiş.
C grubu aynı müziği işlenmeden dinlemiş. (plasebo etkisi).
İstatistiksel olarak anlamlı davranışsal değişiklikler ABC listesine göre I grubunda görüldü.
Elektrofizyolojik: İ grubundaki 3 denek ve C grubundaki 2 denek (P300 ERP) elektrofizlyolojik deneyini tamamlayabildi. I grubundaki deneklerde AIT’den 3 ay sonra, işitsel P300 ERP’da dramatik gelişmeler görüldü. C grubunda (plasebo etkisi) hiçbir gelişme görülmedi.
(Auditory Integration Training: A Double-Blind Study of Behavioral, Electro-physiological, and Audiometric Effects in Autistic Subjects
Stephen M. Edelson, Deborah Arin, Margaret Bauman, Scott E. Lukas, Jane H. Rudy, Michelle Sholar, and Bernard Rimland
Autism Research Institute, San Diego, CA; Massachusetts General Hospital, Boston, MA; McLean Hospital, Belmont, MA; and Upper Valley Medical Centers, Troy, OH
Focus on Autism and Other Developmental Disabilities, 1999, 14, 73-81
Nineteen autistic subjects were assigned at random to either the experimental group (n=9), which listened to AIT-processed music, or a placebo group (n=10), which listened to the same, but unprocessed, music. All evaluations were ‘blind’ to group assignment. Behavioral, electro-physiological, and audiometric measures were assessed prior to and following AIT. Behavioral: A significant improvement was observed in behavioral problems (using the ABC-1) in the experimental group at the 3-month follow-up assessment. Electrophysiological: Of the 19 subjects, three experimental group and two placebo group subjects were able to cooperate with the auditory P300 Event Related Potential (ERP) task. All five subjects showed abnormal P300 ERPs prior to the AIT listening sessions. Three months following AIT, all three subjects showed a dramatic improvement in their auditory P300 ERP. No improvement was seen in the placebo group. Audiometric: The subjects’ poor communication and attention skills precluded formal statistical evaluation of the data from a battery of audiometric tests; however, an audiologist was able to assign correctly 10 of the 15 subjects for whom partial data were available to the treated and non-treated groups, on a ‘blind’ basis.

Auditory Integration Training and Autism: Two Case Studies
Mark Morgan Brown
Republic of Ireland
British Journal of Occupational Therapy, 1999, 62, 13-18.
British Journal of Occupational Therapy’de yayınlanan ve iki otizmli kardeş ile yapılan bir araştırma.Kardeşlerden biri 5 (erkek) yaşında, diğeri ise 3,5 (kız) yaşında.
Gözlemler 2 ay ve 6 ay sonra yapılmış.Aşağıda detaylı olarak her iki kardeşin gelişim raporları sunulmuştur:
Dikkat,anlamlı etkinliklerde insiyatif kullanma, bilinç ve duyuların gelişimi, denge ve motor, yerde yerçekimi ile kendini emniyette hissedebilme duygusu, problem davranışlar, dil vekonuşma, sosyal ve duygusal gelişim ve gözkontağı.


Beş otizmli çocuk ile yapılan Berard AIT pilot araştırma. ProfWayneKirby,Asheville,USA 1999
Andrew, 3 yaşında, kekeme, bazı seslere tepkili, (fren yapan araba sesi, bebek ağlaması, motorlu testere, motorsiklet ve yüksek müzik)
9.dinletide: Sakinleşme, endişe azalması ve kekemelikte azalma.
3 ay sonra anne/babanın raporu: Hızlı konuşmazsa kekemelik tamamen yok. Tepkide bulunduğu seslere artık tepki vermiyor.
Sam, 6 yaşında, konuşma gecikmesi, bazı seslere aşırı tepki.
10.dinleti sonrası: telaffuz düzelmesi, sakinleşme ve eskiye göre odaklanmanın daha iyi olması.
11.dinletiden sonra: İlave olarak bazı seslere olan aşırı tepkinin kaybolması.
3 aylık kontrolda: arkadaş edinmeye başlaması, bir kaç arkadaşıyla aynı anda oynayabilmeye başlaması, oyun ve dil yeteneğinin artması, yazısının düzelmesi ve pozitif bir gelişim gösterdiği.
Carl, 9 yaşında,ağır otizmli,konuşma hemen hemen hiç yok, sadece ’mam- mam’ ve sese karşılı çok tepkili.
3 aylık kontrolda: Sese karşı aşırı duyarlılık kayboluyor.
Norman, 6 yaşında, otizmli, kimsenin anlayamadığı şekilde tek heceli sesler çıkarıyor, sese aşırı tepkili (elektrikli süpürge, mutfak robotu ve mikrodalga)
AIT dinletilerinin daha ortalarında 7 kelimelik cümle kurmaya ve kardeşiyle oyun oynamaya başlıyor.
Annesi, Norman’ınkonuşma dilinin büyük gelişimi yanısıra; anlamasının arttığını, uykusunun düzene girdiğini, sese aşırı tepkisinin azaldığını, sosyalleştiğini, diğer çocuklarla oynamaya başladığını ve AIT’in Norman’ın yaşamında bir dönüm noktası olduğunu bildirdi.
Richard, 4 yaşında, PDD, gecikmiş konuşma ve sese aşırı tepkisini kulaklarını örterek belli etme.
Daha dinletiler sırasında anne Richar’ın sese aşırı tepkisinin azaldığını, LunaParka gidip oradaki sesleri kaldırabildiğini, sakinleştğini, olgunlaştığını ve daha sonraki kontrolda; sosyal kuralların farkındalığını, yeni arkadaşlar edinmek istediğini, oyuncaklarını arkadaşları ile paylaşabildiğini, konuşma dilini nüans olarak ilerlettiğini, daha çok kelime kullanmaya başladığını,uzun cümleler kurduğunu rapor etmiştir.

1993, Auditory Integration Training – Two studies – T. Veale – Comprehensive Concepts in Speech and Hearing
 

Konuşma ve Duyma
Paper presented at The International ASA Conference on Autism, Toronto 1993
İnternasyonal ASA Otizm Konferansında sunuldu. Toronto 1993
Rapor 1. Çift-kör plasebo pilot çalışma, deney grubunda beş kişi (I-grubu) ve kontrol grubu (C grubu) beş kişi. Ebeveynler gelişim formlarını AIT öncesi, AIT bir ay ve üç ay sonrası değerlendirdiler. ABC (anormal davranış kontrol listesi) CPRS (Connors Ebeveyn derecelendirme ölçeği) ve FAPC (Fisher´s işitme sorunları kontrol listesi) tamamladı. Olumlu sonuçlar, AIT’denüç ay sonra üç değerlendirmede de görüldü.
Rapor 2.AIT alan 46 bireyle açık klinik çalışma. Ebeveynler ABCCP (otistik davranış bileşik denetim listesi ve profil) değerlendirdi, ABC, CPRS, FAPC
İstatistiksel önemli gelişmeler AIT’ten sonra bir ay ile altı ay arasında görüldü. 
Daha düşük sayı daha az sorun demek.
Daha düşük sayı daha az sorun demek.
Daha yüksek sayı daha az sorun demek.
Strongestchanges in bothstudies:
Problems in sounddiscrimination
Slow/delayedresponsetoverbalstimuli
Learnspoorlythroughtheauditorychannel
Afraid of newsituations
Holdsbackbowelmovements
Clingstoparentsorotheradult
Unhappy
Has nofriends
Tempertantrums,explosiveandunpredictablebehavior
Throwshimselfaround
Thingsmust be donethesamewayevery time
Inattentive,easilydistracted
Cannotstandtoomuchexcitement
En güçlü değişiklikler:
Sesi algılayıp ayırmadaki sorunlar
Sözlü uyaranlara yavaş/gecikmeli cevap
İşitsel kanalı öğrenmede kullanamama
Yeni durumlarda korku
Bağırsak hareketlerini engelleme
Ebeveyin veya bir yetişkine bağlanma
Mutsuz
Hiç arkadaşı yok
Huysuzluk nöbetleri, fevri ve öngörülemeyen davranış
Kontrolsuz hareketler
Herşeyin aynı zamanda ve aynı şekilde yapılması
Dikkatsizlik, kolayca dikkatin dağılması
Fazla heyecana dayanamama


1999, Auditory Integration Training: One Clinician’s View
Jane R. Madell
Long IslandCollegeHospital and State University of New York, Brooklyn
Language, Speech, and Hearing Services in Schools, 1999, 30, 371-377.
Changes in speech perception were evaluated in several disorders prior to and following AIT. The populations included: autism, pervasive developmental disorder (PDD), multisystem developmental disorder (n=46), attention deficit disorder or attention deficit/hyperactivity disorder (n=26), and central auditory processing disorder with leaning disabilities (CAPD/LD, n=46). Subjects’ speech perception was assessed by asking them to recognize words in both quiet and competing noise environments. Improvement in speech perception was documented in both the quiet and noise conditions following AIT. In a second part of this study, uncomfortable loudness thresholds (UCLS) were evaluated in individuals diagnosed with autism (n=24), PDD (n=26), and CAPD (n=10). UCLs also improved in these children following AIT.

Long-Term Effects of AIT Comparing Treated and Non-Treated Children 
Donna Geffner, Jay R. Lucker, and Ann Gordon
St. John’s University, Jamaica, NY; and Ann Gordon Associates, Commack, NY
Paper Presented at the Annual Convention of the American Speech-Language-Hearing Association, Seattle, 1996.
The study involved a one-year follow-up evaluation of children with Attention Deficit Disorder. Those receiving AIT (n=10) were compared to a control group (n=10) which did not receive AIT. Using a tolerance testing procedure for ‘uncomfortable’ listening levels, improvement of 6 dB in the left ear was observed for the AIT group, but no change was observed in those in the control group. No differences were found between the two groups with respect to listening to ‘comfortable’ speech. Additionally, tests evaluating speech recognition in noise and auditory-language processing showed improvement for those in the AIT group but not for those in the control group.
Changes in Unilateral and Bilateral Sound Sensitivity as a Result of AIT
Deborah Woodward
Woodward Audiology, McLeansville, NC
The Sound Connection, 1994, 2, p.4.
Loudness tolerance was investigated in 60 children with autism and related disorders. Uncomfortable loudness level (UCL) measurements were performed prior to and immediately following AIT. Prior to AIT, the results from the left and right monaural presentations (to each ear independently) as well as the binaural presentation (to both ears simultaneously) were much lower than 90 dBHTL, where 90 dBHTL is considered a normal lower limit of UCL. Furthermore, the binaural tolerance to the speech noise was 9 to 11dBHTL less than the monaural tolerance level, where 3 to 6dBHTL is considered normal. Following AIT, the monaural tolerance level to each ear increased 13 to 15 dBHTL, but overall, the monaural and binaural tolerance levels were lower than normal. This increased tolerance to speech noise was statistically significant. In addition, the binaural tolerance level was only 5 dBHTL lower than the monaural sound presentations, indicating a more normal response.
Auditory Integration Training
Jane R. Madell and Darrell E. Rose
Long IslandCollegeHospital, Brooklyn, NY; and Mayo Clinic, Jacksonville, FL
American Journal of Audiology, March, 1994, 14-18.
This study involved an open clinical trial of AIT on four children. Their diagnoses included: autism, PDD, and learning disabilities. Audiograms of all four children showed improvement following AIT (i.e., a decrease in variability). Behavioral improvement was observed in three of the four children. The benefits reported were: increased calmness, decreased sound sensitivity, and improvements in speech/language and word recognition in noise.

Non-Pharmacological Techniques in the Treatment of Brain Dysfunction 
Jeffrey M. Gerth, Steve A. Barton, Harold F. Engler, Alyne C. Heller, David Freides, and
Jane Blalock
Georgia Institute of Technology, EmoryUniversity, and the AtlantaSpeechSchool
Technical Report prepared for the GTRI Fellows Council, Georgie Tech Research Institute, Georgia Institute of Technology, June, 1994.
This study evaluated the effectiveness of AIT on 10 children with auditory-based learning deficits. Eight of the ten had also been diagnosed as having Attention Deficit Disorder. Subjects were given a series of diagnostic tests, and parents were requested to complete several questionnaires. Two subscales from the Woodcock-Johnson Psycho-Educational Battery test were used to evaluate changes in auditory processing. These subscales, the Sound Blending scale and the Incomplete Words scale, indicated an improvement of one standard deviation or more in 4 of the 10 subjects, and moderate improvement in two other subjects. Performance on other criteria (e.g., CPRS and the FAPC) “could not be meaningfully evaluated, given the amount of missing data.”
Auditory Processing Skills and Auditory Integration Training in Children with ADD 
Donna Geffner, Jay R. Lucker, Ann Gordon and Dolores A.DiStasio
St. John’s University, Jamaica, NY and Ann Gordon Associates, Stony Brook, NY
Paper Presented at the Annual Convention of the American-Speech-Language Hearing Association, New Orleans, 1994
This study investigated changes in audition and language in 16 children with AD/HD. A large number of tests were employed to evaluate possible changes as a result of AIT. The measures included: standard audiometric threshold testing, tolerance for tones and speech, speech recognition in quiet and noise conditions, and the Goldman-Fristoe-Woodcock (GFW) Test of Auditory Selective Attention. Post-assessments were conducted within 3 months following AIT. Significant improvement was observed in the subjects’ tolerance to tones and speech, speech recognition in the noise condition, and in listening skills as measured by the GFW Auditory Selective Attention Test and several subscales from the Detroit Test of Learning Aptitude (oral commissions, attention span for unrelated words, and attention span for related words).

The Effects of Auditory Integration Therapy on Central Auditory Processing
Brenda Huskey, Kathryn Barnett, and Jacqueline M. Cimorelli
University of North Carolina at Greensboro
Paper presented at the American Speech-Language-Hearing Conference, New Orleans, 1994.
In an experimental study, two auditory processing tasks were administered to six subjects in the AIT treatment group and six subjects in a control group. These tasks included the SSW test and the Phonemic Synthesis Test (PST). Pre- and post-tests were given prior to, and at 4 to 6 weeks, and at 8 to 12 weeks following AIT. For the SSW test, there were no improvements in the subjects 4 to 6 weeks following AIT, but there were improvements on the total score and on the left competing condition at 8 to 12 weeks following AIT. There were no changes in the results from the PST.
Clinical Outcome Evaluation: Auditory Integration Training
Jane H. Rudy, Sharon S. Morgan, and Marianne Shepard
UpperValleyMedicalCenters, Troy, Ohio
Paper presented at the Ohio Speech-Language-Hearing Conference, 1994.
In an open-clinical study, 13 subjects diagnosed with attention deficit/hyperactivity disorder (ADHD) and/or central auditory processing dysfunction (CAPD) were given a variety of assessments prior to, immediately following, and three months post-AIT. These tests examined hearing acuity, central auditory processing (SSW, SCAN), auditory evoked potentials (i.e., brain waveforms–P200 and P300), language function (CELF-R), and intelligence (TONI). Immediately following AIT, there were significant improvements in the SSW, SCAN, and CELF-R, and no change in the TONI. Three-months post-AIT, there were additional improvements in the SSW and CELF-R, but no further change in the SCAN. There was also a significant improvement in the TONI. An analysis of the P200 waveform indicated a significant change in amplitude but no change in the P300 waveform latency. No significant changes in hearing acuity were detected during any of the assessments.

Ocular Movements Among Individuals with Autism Pre- and Post-Auditory Integration Training
Margaret P. Creedon in collaboration with Stephen M. Edelson and Janice E. Scharre
Easter Seals Therapeutic Day School, Autism Research Institute, and IllinoisCollege of Optometry
Paper presented at the Annual Conference of the Association for the Advancement of Behavioral Therapy, New York, 1993.
In an open-clinical study, visual tracking movements and optokineticnystagmus (a visual reflex) were assessed in 22 autistic individuals, ages 6 to 13 years, prior to, immediately following, and three months after AIT. Significant improvements were seen in horizontal tracking immediately following AIT and in both horizontal and vertical tracking three months post AIT. No changes were seen in optokineticnystagmus.
Parents completed the FAPC and the ABC-1. The FAPC indicated significant improvement at 3 months post-AIT, and the ABC-1 indicated significant improvement both immediately following and 3 months post-AIT.

Study of the Effects of AIT in Autism
Dawn Cortez-McKee and JaakPanksepp
Bowling Green State University, Ohio
Paper presented at the Annual NW Ohio Autism Society Conference, 1993.
This open-trial clinical study utilized 33 autistic individuals. Participants were assessed using multiple measures prior to (two baseline measures), and at 1-week, 1-month, and 3 months following AIT. The measures included: ABC-1, BSE, CARS, CPRS, FAPC, and SIBQ. Significant improvement was seen on all of the measures, except the FAPC, at the one- and three-month follow-up assessment periods.
BERARD METODU NASIL OLUYOR DA ETKİ EDİYOR?

 

Berard Metodunun nasıl etki ettiğine ve etkiyi nasıl oluşturduğuna dair bazı araştırmacılar tarafından bugün ileri sürülen tezlere bakarsak kulak, burun ve boğaz doktoru Guy Berard Berard’ın daha 1960 yıllarında zaten bu düşünce ve tezleri kitabında açıkladığını görüyoruz. Bu konuda öngörülü olarak 1960’larda yaptığı klinik çalışmaları sırasında bugün üniversitelerde araştırılan ve bilimde kabul edilen hipotezini kurdu. HER TÜRLÜ BAŞARILARIMIZ ÇEVREMİZDEKİ SESLERİ ALGILAMAMIZA BAĞLIDIR!
ÇEVREYLE İLETİŞİMİMİZDE VE GÜNLÜK HAYATTA BAŞARILI OLMAMIZ DIŞARIDAN GELEN SESLERİ NASIL ALGILADIĞIMIZA BAĞLIDIR!

Aynı zamanda ÖĞRENMEDE SAĞ KULAĞIN ÖNEMİNİ anladı.
1967 de Doreen Kimura’nın sağ kulak üzerine yaptığı araştırmalar sonucunda ulaştığı fikir de aynı olduğundan Berard’ı destekliyordu. REA (Right Ear Advantage=Sağ Kulak Tercihi) SAĞ KULAK KONUŞMADAKİ ÇABUK ALGILAMAYI SAĞLADIĞINDAN ÖĞRENMEDE EN ÖNEMLİ UNSURDUR! Kimura Doreen (1967), “Functional Asymmetry of the Brain in Dichotic Listening,” Cortex, 3, 163-178/
Daha sonraları bu konudaki çalışmaları görüyoruz.
Bunlardan bazıları:1989, Jensen och Johansen /”Unilateral sensorineural hearing loss in children and auditory performance with respect to right/left ear differences”,Br J Audiol. 1989 Aug;23(3):207-13./ Açıklamalarında algıda sağ kulağını kullanma alışkanlığı olan çocuklar, sol kulağını kullananlara göre okulda çok daha başarılı olduklarını yazmaktadır. Ayrıca sol kulak alışkanlıklı algıyı kullanan çocuklar konuşmaların ve çevreden duyulan seslerden rahatsız olup dikkatlerinin dağıldığını da yazmaktadır.
2004 yılında Sinninger & Cone-Wesson çok önemli bir görüş öne sürdüler: “Asymmetric cochlear processing mimics hemispheric specialization”,Science. 2004 Sep 10;305(5690):1581/ 3000 bebek üzerinde işitsel testlerle yapılan araştırmada sağ kulağın özel görevinin konuşma dili olduğu idi.
Sol kulak ise tonlar üzerineydi. Aynı zamanda bu özellik daha önceleri zannedilen beyinde oluşması yerine doğrudan kulakta oluştuğu özelliğiydi.
Kimuras’ın REA hakkındaki tezi, 5 yıl sonra projeye alındı ve doğrudan çocuklarla bilimsel olarak 3 proje olarak çalışıldı. Tommasi & Marzoli /”Side biases in humans (Homo sapiens): three ecological studies on hemispheric asymmetries”,Naturwissenschaften, 2009; DOI: 10.1007/s00114-009-0571-4/.Bu araştırmada sağ kulaktan alınan verimin fazlalığı görülürken, sol zihne en kısa yoldan gitmenin yararının konuşma ve dil hızını artırması yanı sıra işitsel algıyı da hızlandırdığı için çocuklar ebeveyinlerin ilk söyleyişlerinde işitmeyi bilinçli dinlemeye döndürdüler.
Öğrenme güçlüğü ile işitsel algı arasındaki bağı Berard çok önceleri keşfetmişti. Daha bu yıl, 2013 Nina Kraus /”J. Hornickel, N. Kraus. Unstable Representation of Sound: A Biological Marker of Dyslexia”,Journal of Neuroscience, 2013; 33 (8): 3500 DOI: 10.1523/JNEUROSCI.4205-12.2013/ Nina Kraus öğrenme ile zihnin seslerin şifresini çözmesi arasında bağ olduğunu yazmıştır.
Hayes EA, Warrier CM, Nicol TG, Zecker SG, Kraus N /Neural plasticity following auditory training in children with learning problems, http://www.ncbi.nlm.nih.gov/pubmed/12686276 / 2003 yılında ‘öğrenme güçlüğü yaşayan çocukların işitsel algı eğitiminden sonraki nöronesnekliği’ projelerinden çıkan sonuca göre: Öğrenme güçlüğü olan çocukların işitsel eğitim amaçlı kullandıkları bilgisayar programları sonucuna göre bu çocuklarda fonemin (konuşma sesinin) nöron şifresindeki esnekliğin arttığını ve böylece olumsuz davranışların olumluya döndüğünü görmüşlerdir.
Nadine Gaab 2007 yılında, okuma-yazma güçlüğü olan (disleksi) çocuklarla ve konuşma için gerekli olan hızlı algılamanın eksikliğinde bu durumun işitsel algıyla en iyi duruma getirilebileceğini ifade etti. ‘Sound Training Rewires Dyslexic Children’s Brains /http://www.sciencedaily.com/releases/2007/10/071030114055.htm/
Nina Kraus, 2013 yılındaki çalışmalarında zihnin şifre çözümünde aynı sonuca ulaştı. “J. Hornickel, N. Kraus. Unstable Representation of Sound: A Biological Marker of Dyslexia”,Journal of Neuroscience, 2013; 33 (8): 3500 DOI: İşitsel Algı Eğitimi ile fonem de daha iyi bir konuma geliyordu. 10.1523/JNEUROSCI.4205-12.2013/
1960’lı yıllarda Berard keşfettiği ve kurduğu İşitsel Algı Eğitiminin aynı zamanda etkin bir işitsel algı etkisi olabilmesi için gerekli olan bir noktayı: zihnin sürprizle karşılaşması olayını yani işitsel algı eğitimini alan kişinin bu sürpriz değişikliliği ile zihinde yeni yollar kurulması vasıtasıyla ebeveyinlerin üzerinde durduğu istenen davranışların ortaya çıkmasının üzerinde önemle durmuştur.
Josef Rauschecker 2012 yılında şunu gösterdi: /http://m.npr.org/news/Science/164101652/ motor hareketleri düzenleyen bölgeler (MR ile) yeni, ilk kez karşılaştığı müziği dinleyenlerde sürpriz etkisi ile büyük bir oranda etkilenmişti. Tanıdığı, bildiği müziği dinleyen kişilerde ise motor hareketlerde bir değişikliğe rastlanmamıştı.

İLGİLİ BAŞKA MAKALELER
Theories of Auditory Integration Training – an OVERVIEW by Michael MacCarthy
Reprinted by permission from Marcialyn (Marcy) McCarthy, M.A. Michael R. McCarthy is a developmental psychologist and his wife Marcy McCarthy has a Masters degree in Special Education with an emphasis in early childhood.
Auditory Integration Training is a foundational therapy that trains and coordinates the efforts of the ear and the audio-recipient structures in the brain. This approach was developed by Dr. Guy Berard who was inspired by the work of Dr. Alfred Tomatis.

 

THE HUMAN AUDITORY SYSTEM
This is a highly specialized system, which is capable of a wide range of functional plasticity and a great deal of potential to acquire different phonetic systems. (Prof. Dr. rer. nat. Lutz Jäncke (Project Leader) at the University of Zurich. In a study using functional MRI, the researchers at University of Zurich are exploring the degree to which short term influences can alter the functional neuroanatomy of the auditory system. They are investigating the activation of the auditory cortex and its adjacent cortical regions during auditory stimulation. The scientists are studying the auditory cortices of musicians and non-musicians. They hypothesize that the human auditory cortex is highly plastic and capable of adapting to long-term auditory stimulation. This is important research since with Auditory Integration Training, our goal is to change how the brain processes sounds. We use randomized music to present the brain with unpredictable and novel sounds to process. Our clinical evidence indicates that Auditory Integration Training has a profound effect on the brain’s rate of processing sounds.

 

DESCRIPTION OF AUDITORY INTEGRATION TRAINING
Auditory Integration Training, using the Berard method is a 10 day program designed to improve language comprehension, clarify hearing and reduce hearing sensitivities.
Each day of Auditory Integration Training consists of 2-thirty minute sessions. Clients wear studio quality headphones and listen to “music” that sounds like its been stirred up in the blender. That’s called “randomization”.
The idea is to make the “music” move. The brain learns through movement. In order to understand the process, think of movement in terms of fluctuating frequencies and fluctuating volumes of sounds. Auditory Integration Training influences changes in brain operation by presenting the ears with fluctuating sounds, which heightens the brain’s attention to flow along the auditory pathways of the brain.
When the brain hears these mixed up and novel sounds, it has to switch gears to a more attentive state.
Over and over again the brain has to sort and re-assemble the sound segments. As this is happening inside the brain, many brain structures get practice in communicating with adjacent brain structures in a new series of circuitry and by making new connections.
This information flow is what the brain considers to be movement – in a synaptic sense. This neuronal activity allows the individual to experience a heightened awareness of sound processing. During the sessions, the brain is practicing a series of new levels of attentional states.

FOUR ELEMENTS THAT PERTAIN DIRECTLY TO HUMAN NATURE AND THE BRAIN
As I have observed individuals throughout the 13 years of practice in the field of Auditory Integration Training, four categories of brain functioning have come to mind:
Neuroplasticity this is the recognition that change happens in the brain according to experiences that therapies and learning provide to it. Plasticity isn’t possible without sufficient attention. Neuroplasticity is the ability of the brain to shape or mold itself by expansion or contraction of neuronal processes due to injury, electrical activities or chemical stimulation. It is dependent upon a structural change of the neuron.
Attention This is the brain’s response to the world around it and also its attempt to encounter the world and its elements.
Motivation This is the emotional side of attention. E-motion is motion outward – it is interactional. It’s the brain attempt to initiate action or movement. This is a purposeful emotional state which often leads to interaction with another person or thing.
And Movement The means by which the brain learns more about its world. Movement provides the brain and the individual with an opportunity to adjust to input. It is one of the outcomes of motivation and emotional curiosity. Many times movement attempts to find stasis. Think of movement as information flow along neuronal pathways.

HISTORY OF AUDITORY INTEGRATION TRAINING
It was developed by Dr. Berard in France nearly 35 years ago. Berard’s method is based upon the work of Alfred Tomatis. The Tomatis style of Auditory Training is a long, not as intense experience as the Berard method. The Berard method was introduced to the US in the very late 1980’s, it was initially embraced by the autism support groups through the work of Annabel Stehli, who wrote “Sound of a Miracle” and later authored a series of anecdotal accounts, called “Dancing in the Rain”. Berard AIT was initially developed for those who had sensitive or painful hearing and then became an alternative method of helping people with major depression and suicidal tendencies.

THE CURRENT CRITERIA FOR USES OF AUDITORY INTEGRATION TRAINING
We look at test results and then compare that to a health and behavior history.
Many people benefit from Auditory Integration Training, so diagnosis is not a necessary criterion. Auditory Integration Training has benefited people with:

people with learning disabilities,
people on the autism spectrum,
people on the ADD spectrum,
people with Down Syndrome,
people with Rett Syndrome,
people with Angelman Syndrome,
people with Williams Syndrome,

 

NEURO-FUNCTIONAL DEFICITS IN AUTISM – AUSTIC SPECTRUM DISORDER (ASD)
There are 4 neuro-functional deficits in autism, according to Lyn Waterhouse at Trenton State College:
The first is a problem with the hippocampus (memory center), too much cell-packing. It’s inefficient and this means that there’s too much fragmentation.
The second is that the center of the limbic system, the amygdala is not assigning significance to events as they happen.
The third the oxytocin system is faulty and does not allow sufficient bonding and affiliative behavior.
The fourth is too much attention. Over-processing of meaningless data. There is a problem with the temporal & parietal lobes. Ratey 326
Remember the importance of the spectrum factor, these deficits and symptoms will array themselves along a range of degree of intensity. Therefore, there is a range of effectiveness of therapies for different people, different degrees of effectiveness.

 

HOW LONG DOES AUDITORY INTEGRATION TRAINING LAST?
For many people one time through Auditory Integration Training is sufficient. For people on the autism spectrum or those with severe forms of sensory integration disorder, they may find themselves repeating sessions. Most of the people with mood disorder find one time through to be sufficient; however, Berard found that those with severe depression, especially with suicidal tendencies, should go through multiple times.

TESTING AND CANDIDACY FOR AUDITORY INTEGRATION TRAINING
When we began our practice in 1991, we used an audiometer to do our intake, midpoint and exit testing. But when people are very young or when they are non-verbal or have motor timing problems, this may not be a satisfactory way of finding out how people hear. So we found out about some equipment that was manufactured in the UK and was used to test babies. This equipment is called Otoacoustic Emissions Testing. It sends signals into the ear canal and then registers the feedback or echo of the cochlea. The signals have to transit the canal, pass through the ear drum and then hit the cochlea. That journey is recorded electronically and is sent to the computer as a graph. So while there really isn’t a direct comparison to audiometry, it gives a more reliable view of the hearing profile. It can be made more reliable when behaviors are quiet, the body is relaxed and ambient noise is reduced.
When we have a test of the hearing profile in hand, we look to find out which ear needs the most work. One of the elements we’ve noticed over the years is that usually there is some asymmetry in hearing potential ear to ear. So we look at the ear that needs the most work & pick out the frequencies that are most easily registered. Then we take that frequency or frequencies out of the music presentation that will follow over the next 10 days.
This approach is much like “Constraint-Induced Movement Therapy” devised for stroke patients. This type of therapy helps to remap the motor strip of the brain. The therapy is used to restore functions to limbs of stroke patients who have lost function as much as 45 years before! Schwartz & Begley 192 Edward Taub did landmark work in this area.
The reason I have compared Auditory Integration Training to Constraint Induced Movement therapy is because the protocol calls for restricting the easily heard frequencies and increasing stimulation of the frequencies registering as troughs on the hearing profile. Furthermore, added this mix is the randomization of the sounds. The remaining sounds cut in and out rapidly and unpredictably.

OUTCOMES OF AUDITORY INTEGRATION TRAINING
Some of the outcomes of Auditory Integration Training are better attention, better listening, more motivation to engage in social communication,fewer overt symptoms of depression, better eye contact, better sensory integration, and better balance and coordination.
No brain really WANTS to change, so while a person is undergoing Auditory Integration Training, some adverse reactions may show up in terms of behaviors and visceral responses. There may be some over-activity, some fatigue, and increase or decrease in appetite, more irritability, some nausea, as a result of possible vestibular disturbance.
The unfamiliar, unpredictable stimulus of randomized “music” leads itself to brain disturbance, which leads to a reorganization of neurons and re-routing of information across many structures of the brain. Twenty half hour practice sessions, give plenty of practice in moving around the new routes and leads to new attentional levels in the brain. Attention in the brain gains new vistas.

ROUTING AUDITORY INPUT
The brain breaks incoming data into tiny bits. It distributes these pieces to different departments and then reassembles them, collecting other useful pieces of information along the way that relate to our past experiences and even what we WANT to hear.
http://www.umanitoba.ca/faculties/medicine/anatomy/EAROBJEC.htm
The sounds signals are actually registered as pressure changes, like vibrations, that hit the ear drum & move the little bones in the ear. They travel further into the ear to the cochlea – shaped like a seashell – a spiral container filled with hair cells that bend as they are vibrated. Each of the 15,000 hair cells responds to particular frequencies at particular loudness. Ratey 91
The hair cell motion is converted into electrical signals that fire neurons.
Each hair cell is sensitive to a limited frequency range
Our brains actually SHAPE what we hear.
There are more neural networks extending FROM the brain TO the ears than are coming from the ears to the brain. Ratey 93
http://www.conradsimon.org/AuditorySystem.shtml
Layer upon layer of sound units pile up and beg to be registered by a whole array of brain departments. The brain develops “models” of what it expects to hear – phonemes, words, or music.
Those who are dyslexic or who have a condition called Central Auditory Processing Disorder, CAPD, must be continually surprised at what they hear. Their phonemic models continually break down. This leads to a sort of communication traffic jam. Ratey 93

THE EAR
First the ear processes the sounds. Then the information is broken down & channeled to the brainstem, through the auditory nerve. This nerve has 25,000 nerve fibers – which are not many compared to the nerve bundles for vision and touch. The nerves are always fired up, ready to take information to the right spots in the brain.
http://www.conradsimon.org/AuditorySystem.shtml

THE BRAINSTEM
The brainstem sorts its pieces of information by tone and timbre or quality of the piece of sound. The brainstem preserves the sound and starts to distinguish the sets of sounds as phonemes, that don’t carry any meaning in themselves. Ratey 94 The medulla examines the vibrations for spatial characteristics. Ratey 94 We maintain mental maps in our cortex to estimate WHERE the sound comes from – per research that has come out from Michael Graziano at Princeton University. Ratey 113

OLIVARY STUDY – HEARING NEAR & FAR
The brainstem sends the sound vibrations to the superior olivary to figure out that louder sounds are closer. Here is where it is interesting to bring in information from Scientific American Feb 2000 article on autism by Patricia Rodier. She notes that in autopsy studies that people with autism have a “disappeared” superior olivary!!!! She notes that there are other physical characteristics and brain measurement anolomalies with people with autism.
The olivaries send messages to the midbrain and this coordinates the body’s reflexes and reactions. The superior colliculus in the midbrain is crucial for integrating sensory information from the sensory information systems. It tries to bring about a unified response to experiences. Ratey 94 The Superior Olivary has a lot to do with timing. It interprets information from both ears.

 

THE JOURNEY CONTINUES
From the superior colliculus, the auditory impulses travel to the thalamus and then to the primary auditory cortex in the temporal lobe. This links it to the secondary auditory cortex and that structure connects to other parts of the brain which coordinate hearing with memories and awareness. As the signals travel to the medial geniculate bodies (in the thalamus), the signal is divided between 2 types of cells: the parvocellular and the magnocellular cells. The magnocellular process the rapidly incoming sounds & send them to the auditory cortex.
http://pages.unibas.ch/dmr/mr_physik/research/fMRI/auditory/main.htm

 

AUDITORY CORTEX
By the time the sound signals arrive in the cortex, the columns of neurons there are sensitive to specific differences in sound frequencies and changes in frequencies and cause different columns to fire. Then the cortex must do a comparison between the patterns generated by the columns of neurons with the stored patterns with which it’s already familiar. Ratey 94/95

 

LONG TRIP
As you can see there’s a very complicated route that these signals must travel. Auditory impulses travel across a large neural landscape. The left and the right sides of the brain must work together to discriminate complex sounds. The right side examines the sounds for harmonies and relationships between close sounds. The left side compares auditory information with the language centers. Ratey 95/96

 

BROCA’S AREA
Broca’s Area is located in the left frontal lobe near the primary motor cortex. Paula Tallal (FastForWord fame) has found that fast processing of speech takes place in Broca’s area of the Left Hemisphere. Broca’s area is thought of as the controller of the motor cortex (controller of voice box and tongue). Apparently speech has a great deal to do with the movement regions of the brain. Ratey 97
In the 1990’s, researcher Michael Merzenich at the University of California (San Francisco) found in animal research that auditory inputs have the power to change the brain. By altering sound input, they found changes happening in the auditory cortices of monkeys’ brains – this factor changed the rate at which the brain processes sounds.
When Merzenich and Tallal put their research together, they discovered that children with specific language impairment construct their auditory cortex from faulty inputs. They found these children take as long as 1/3 to 1/5 of a second to decode mini sound segments, this is as long as it takes neruo-typs to process SYLLABLES. One factor in the specific language impairments were the number & intensity of ear infections. Schwartz & Begley
Auditory Integration Training, like many other therapies helps to bring new dimension to the brain and how the brain operates. I like to think that it makes the brain more efficient.

 

CHANGES IN AUDITION
In 1999 there was research performed by Rainer Klinke at the Physiologisches Institute of Frankfurt, Germany. He tested the effects of cochlear implants on a group of 3 to 4 month old kittens who had been born deaf. Brain imaging showed that the unstimulated auditory nervous system in the deaf kitties had not developed like normal cats. After the implants, the kitties began to respond to sounds in the same way cats born with normal hearing did.
Not surprisingly, their auditory ciritces change too. Within a short time the size of the region of the auditory cortex that responded to sound had increased. The strength of the electrical signals in the auditory cortex rose and measures of information processing in the cortex increased as well. Schwartz & Begley 192
When scientists remove the cochlea of lab animals in one ear soon after birth. The number and size of auditory neurons in the brainstem are reduced. But this effect can be reversed again by providing sensory input. For instance, with congenitally deaf children given cochlear implants (which bypass the damaged sensory hair cells of the inner ear) and carry acoustic signals directly to the cortex of the brain, the sudden onset of sensory – in this case auditory – input leads to nearly perfect speaking and hearing as well as individuals with normal language development. Schwartz & Begley 125

 

THE BRAIN AND SOME VALUABLE BRAIN STATISTICS
Here are some interesting statistics about the brain:
The brain is the greediest organ of the body.
It burns oxygen & glucose at 10 times the rate of all other body tissues – at rest!
The brain is only 2.5% of the total body weight, but is responsible for 20% of the energy consumed when the body is at rest. Greenfield 27
The brains of children between the ages of 3 and 10 consume two times as much of the blood nutrient glucose as those of adults. Ratey 35
The brains of children are less efficient and therefore need more fuel.
Auditory neurons appear in the first 3 weeks after conception.
Auditory centers in the brainstem emerge by 13 weeks of gestation.
The brain is vital for processing and coordinating information that floods through the senses. The outputs of the brain are expressed as movements (muscular and neural). Greenfield 33 All human communication relies on movement whether its body language, how the lips, tongue and mouth move when speaking or in physical gestures, (like a hug).
Neurons actually anticipate signals – that is – they are primed to expect the same old kind of signal. But when they get a new intensity of signal or a new nuance of signal, they perceive the input as new & quite disturbing. Greenfield 33 This disturbance is good, since it leads to reorganization. Ratey 56
A baby’s brain contains something on the order of 100 billion nerve cells.
Each neuron makes an average of 2,500 connections or synapses.
The connectivity peak may be 15,000 synapses by the time the child is 2 or 3 & then the system goes through a period of “pruning”.
The synapses that stay are more efficient and carry traffic more reliably.
The motto of neurons is survival of the busiest. The adult brain boasts about 100 trillion synapses, some estimates go as high as 1,000 trillion. Schwartz & Begley 117
MOVEMENT AND THE BRAIN
Movement is a very important factor in brain development. It’s important for most brain functions, like memory, emotion, language and learning, cognition and to behavior. Ratey 148 You will hear about the cerebellum anytime you hear about movement and the brain. The cerebellum coordinates physical movement, as well as the movement of thoughts.
The brain circuits that control, sequence and time mental acts are the same circuits that are used to control or order, sequence & time physical acts. Ratey 148/149 Motor activity takes place in 3 stages:
We analyze the incoming data (either external or internal)
We formulate & monitor a response plan – this is the stage that involves thought-processing. It is here at this sequencing stage that involves organizing the serial order of information & integrating this information with the previously learned data.
We execute the plan
We can surmise that exercise can produce chemical changes that give us stronger, healthier & happier brains. We must not forget to view PLAY as a motor activity – it helps learning & social relationships develop. PLAY is an activity that gives children a sense of mastery & is rewarding. Play as a motor activity prepares us for later adult social interactions. Ratey 176/177

 

MOTION AND MOVEMENT OF INFORMATION
The entire front half of the brain is devoted to organizing action – physical & mental. The frontal cortex is the most interconnected part of the brain. Ratey 148 The primary motor cortex & the premotor cortex are located here. Ratey 156 This is where our “self-awareness” lies. It is driven by motor neurons. Another actor is the cerebellum as mentioned before. The cerebellum heavily influences the cortex. Ratey 151
The sensory cortex located just behind the primary motor area gathers additional data about our thoughts, past experiences, emotions and stored memories, which gives our movements & actions extra meaning, and complexity. Ratey 157
Motor function happens under the influence of attention & emotion. Our brains constantly use attention and emotion to determine what is important & what is not. This ability determines whether we survive. The feedback loop is extra tight between the motor system and the attentional and emotional circuits. Ratey 171

 

MUSIC EQUATED WITH MOTION
Music makes both sides of the brain work interdependently. The left side is better at targeting the succession of sounds – the rhythm. The right side works on elements of timbre – sound quality.
Henri Platel (from the University of Caen, France) used PET scans to study non-musical men as they listened to classical music and the random sequences of musical notes. He found that Broca’s area was activated then his subjects listened to classical (well-known) pieces of music. Ratey 97
The brain is an organ that breaks sensory information apart and reassembles it to form the final “perception”. There is not single “attention center.” There are multiple distribution systems.
The prefrontal cortex occupies itself with task related memory and planning.
The parietal cortex involved itself with bodily and environmental awareness
The anterior cingulate is concerned with motivation.
The cerebellum and the basal ganglia center their efforts with habit formation and coordination of movement. Schwartz & Begley 331

 

BRAIN SYSTEMS
It’s important to think of the brain as a series of systems, overlaid and inter-related. The cerebellum plays an important role in motor memory. Ratey 204 Eric Courschene is a well known researcher whose work in autism autopsy studies has shown that there is a reduction and disarray in the number of Purkinje neurons in the cerebellums of people with autism. These are filtering neurons; they have much to do with the information that leaves the cerebellum to make its way to the frontal cortex. Ratey 307
This deficit in the function of the cerebellum has a great effect on how the world may be perceived by a person with autism. The world may look very chaotic and incoherent. The cerebellum has a big job of coordinating the incoming visual, auditory and somatosensory information. Depending on how the information is filtered on its outgoing trip to the higher parts of the brain, the ability to shift attention from one sensory issue to the next is in peril.
The cerebellum is recently been implicated in how one functions socially. It is an important area of the brain as the cerebellum is a star player in cognition. The cerebellum is a major association center a major switchboard in regulating attentional states. Ratey 305
The brain relies upon a sensitive system of feedback loops. For instance, motor memory is achieved with a very sophisticated feedback system. Ratey 179 In order for effective motor memories to operate the frontal cortex plans & organizes the events, while depending upon the basal ganglia & hippocampus to store memories in long-term storage banks. Ratey 205/206 The frontal lobe is termed the brain’s executive function.

 

AUDITORY INTEGRATION TRAINING OUTCOMES AND BRAIN NEUROPLASTICITY: NEUROPLASTICITY & THE CHANGING LANDSCAPE OF ATTENTION IN THE BRAIN
Sensory input in itself it not responsible for brain change. The most important factor is the attentional state. Research by Michael Merzenich in 1993 indicates that passive stimulation doesn’t do the job of changing the brain circuits. When monkeys listened to specific frequencies – auditory cortex landscape enlarged, but when the monkeys were distracted, they lost circuitry strength & landscape. Schwartz & Begley
For people with autism, information is unfiltered, poorly routed and they are unable to “pay attention”. The sensory information speeds along too fast for them to catch and process. Ratey 78 Sensory integration must be intact in order for the perception of the world to make sense. Ratey 82 This is the ability of the brain to make new connections and assume new roles. Plasticity follows an increase or decrease in sensory input.
Neuroplasticity is concerned with taking over unused regions of the brain or remodeling the whole landscape. Schwartz & Begley The simple act of paying attention can make physical changes within the brain. Attention is influenced by the limbic system & importantly the amygdala. Ratey 121 Experience molds the brain, but only a brain that pays attention. Neuroplasticity or cortical reorganization is use induced. Schwartz & Begley Cells that fire together, wire together, strengthening the synaptic routings. This means that the cells must “practice together” over and over again. Schwartz & Begley 107

 

MOTIVATION AND EMOTION
Emotion is movement outward. It conveys our important internal states and needs. Ratey 227/228 The limbic system is an incredibly interconnect circuitry which is the launching point for emotions. The upper cortex and the limbic system are in continuous feedback loop status. Ratey 228
Motivation is a process the ties emotion & action.
Motivation is the director of emotions.
Motivation is the pressure to act. Ratey 247

 

BIBLIOGRAPHY
A User’s Guide to the Brain, Perception, Attention & the Four Theatres of the Brain, by John J. Ratey, MD
The Mind and the Brain, Neuroplasticity & the Power of Mental Force, by Jeffrey M. Schwartz, MD & Sharon Begley, published by Regan Books
The Secret Life of the Brain by Richard Restak, MD published by Joseph Henry Press
The Human Brain, A Guided Tour, by Susan A. Greenfield, Published by Basic Books
Mapping the Mind by Rita Carter, Published by University of California Press
The Early Origins of AutismNew research into the causes of this baffling disorder is focusing on genes that control the development of the brain by Patricia M. Rodier Scientific American, Feb 2000
Reprinted by permission from Marcialyn (Marcy) McCarthy, M.A. Michael R. McCarthy is a developmental psychologist and his wife Marcy McCarthy has a Masters degree in Special Education with an emphasis in early childhood.
http://www.researchgate.net/publication/228349539_Training-related_changes_in_the_brain_evidence_from_human_auditory-evoked_potentials
Training-Related Changes in the Brain:
Evidence from Human Auditory-Evoked
Potentials
Kelly L.Tremblay, Ph.D.,/assoc prof/

 

ABSTRACT
Auditory-evoked potentials are being used to examine trainingrelated
changes in the human central auditory system, and there is converging
evidence that focused listening training, using various training methods
and different types of stimuli alters evoked neural activity. Such training related
changes are often described in terms of physiological plasticity, a
process whereby the neural representation of the acoustic cue is modified
with training. In this review, the concept of plasticity is discussed from a
broader perspective. Specifically addressed is how electrophysiological
methods are being used to study physiological modifications that occur
with training, and how this information might contribute to the rehabilitation of people who wear hearing aids and cochlear implants.
http://www.sciencedirect.com/science/article/pii/S0166432804001809
Auditory training improves neural timing in the human brainstem
Nicole M. Russoa, b, c, , ,
Trent G. Nicola, c,
Steven G. Zeckerc,
Erin A. Hayesa, b, c,
Nina Krausa, b, c, d, e
The auditory brainstem response reflects neural encoding of the acoustic characteristic of a speech syllable with remarkable precision. Some children with learning impairments demonstrate abnormalities in this preconscious measure of neural encoding especially in background noise.
This study investigated whether auditory training targeted to remediate perceptually-based learning problems would alter the neural brainstem encoding of the acoustic sound structure of speech in such children. Nine subjects, clinically diagnosed with a language-based learning problem (e.g., dyslexia), worked with auditory perceptual training software. Prior to beginning and within three months after completing the training program, brainstem responses to the syllable /da/ were recorded in quiet and background noise. Subjects underwent additional auditory neurophysiological, perceptual, and cognitive testing. Ten control subjects, who did not participate in any remediation program, underwent the same battery of tests at time intervals equivalent to the trained subjects.
Transient and sustained (frequency-following response) components of the brainstem response were evaluated. The primary pathway afferent volley – neural events occurring earlier than 11 ms after stimulus onset – did not demonstrate plasticity. However, quiet-to-noise inter-response correlations of the sustained response (∼11–50 ms) increased significantly in the trained children, reflecting improved stimulus encoding precision, whereas control subjects did not exhibit this change. Thus, auditory training can alter the preconscious neural encoding of complex sounds by improving neural synchrony in the auditory brainstem. Additionally, several measures of brainstem response timing were related to changes in cortical physiology, as well as perceptual, academic, and cognitive measures from pre- to post-training.
http://www.ncbi.nlm.nih.gov/pubmed/2790306
Unilateral sensorineural hearing loss in children: cognitive abilities with respect to right/left ear differences
Hartvig Jensen J1, Børre S, Johansen PA.
Br J Audiol. 1989 Aug;23(3):215-20.Abstract
Thirty children (age 10 16 years) suffering from unilateral hearing loss (UHL) were matched with a control group and examined by a battery of psychological tests (verbal and non-verbal subtests) in order to investigate a possible right or left ear difference on cognitive functions. The results confirm that right ear impaired children perform significantly poorer than their left ear impaired counterparts especially in verbal subtests that are sensitive to minor input/processing damages. The data obtained suggest that right ear impaired children are at risk in the educational system.
http://www.sciencedaily.com/releases/2011/12/111221140340.htm
Altered Low-Gamma Sampling in Auditory Cortex Accounts for the Three Main Facets of Dyslexia- Listen up: Abnormality in auditory processing underlies dyslexia
Katia Lehongre, Franck Ramus, Nadège Villiermet, Denis Schwartz, Anne-Lise Giraud, 2012
Neuron, 2011; 72 (6)/ScienceDaily (Oct. 30, 2007) — Some children with dyslexia struggle to read because their brains aren’t properly wired to process fast-changing sounds, according to a brain-imaging study published in the journal Restorative Neurology and Neuroscience..The study found that sound training via computer exercises can literally rewire children’s brains, correcting the sound processing problem and improving reading.
According to the study’s first author, Nadine Gaab, PhD, of the Laboratory of Cognitive Neuroscience at Children’s Hospital Boston, the finding may someday help clinicians diagnose dyslexia even before reading begins, and suggests new ways of treating dyslexia, such as musical training.
Children with developmental dyslexia confuse letters and syllables when they read. The idea that they may have an underlying problem processing sound was introduced by Paula Tallal, PhD, of Rutgers University in the 1970s, but it has never been tested using brain imaging. Gaab used functional MRI imaging (fMRI) to examine how the brains of 9- to 12-year old children with developmental dyslexia, and normal readers, responded to sounds, both before and after using educational software called Fast ForWord Language, designed in part by Tallal, a co-author on the study.
Gaab first tested how the children’s brains responded to two types of sounds: fast-changing and slow-changing. These sounds were not language, but resembled vocal patterns found in speech. As Gaab watched using brain fMRI, the children listened to the sounds through headphones. The fast-changing sounds changed in pitch or other acoustic qualities quickly–over tens of milliseconds–as in normal speech. By contrast, slow-changing sounds changed over only hundreds of milliseconds.
http://www.ncbi.nlm.nih.gov/pubmed/19543876
Side biases in humans (Homo sapiens): three ecological studies on hemispheric asymmetries-Need Something? Talk To My Right Ear
2009 Marzoli D1, Tommasi L.
Abstract
Hemispheric asymmetries and side biases have been studied in humans mostly in laboratory settings, and evidence obtained in naturalistic settings is scarce. We here report the results of three studies on human ear preference observed during social interactions in noisy environments, i.e., discotheques. In the first study, a spontaneous right-ear preference was observed during linguistic exchange between interacting individuals. This lateral bias was confirmed in a quasi-experimental study in which a confederate experimenter evoked an ear-orienting response in bystanders, under the pretext of approaching them with a whispered request. In the last study, subjects showed a greater proneness to meet an experimenter’s request when it was directly addressed to the right rather than the left ear. Our findings are in agreement both with laboratory studies on hemispheric lateralization for language and approach/avoidance behavior in humans and with animal research. The present work is one of the few studies demonstrating the natural expression of hemispheric asymmetries, showing their effect in everyday human behavior.
http://www.sciencedaily.com/releases/2009/11/091111123600.htm
New Brain Findings On Dyslexic Children: Good Readers Learn From Repeating Auditory Signals, Poor Readers Do Not
Nina Kraus et al, Northwestern University 2009
Summary:
The vast majority of school-aged children can focus on the voice of a teacher amid the cacophony of the typical classroom thanks to a brain that automatically focuses on relevant, predictable and repeating auditory information, according to new research. But for children with developmental dyslexia, the teacher’s voice may get lost in the background noise of banging lockers, whispering children, playground screams and scraping chairs, the researchers say.
http://linc.georgetown.edu/
The Beatles’ Surprising Contribution To Brain Science
Josef HYPERLINK “http://linc.georgetown.edu/people/rauschecker.html”Rauschecker of Georgetown University, 2012
Brain scans showed that motor areas became active when people were hearing something new. But these motor areas were relatively quiet when people heard familiar notes.
http://www.bbc.co.uk/news/science-environment-22096764
The element of surprise in music
Dr Valorie Salimpoor,Rotman Research Institute,Toronto 2013
“But music is abstract: It’s not like you are really hungry and you are about to get a piece of food and you are really excited about it because you are going to eat it – or the same thing applies to sex or money – that’s when you would normally see activity in the nucleus accumbens.
“But what’s cool is that you’re anticipating and getting excited over something entirely abstract – and that’s the next sound that is coming up.”
New tunes – The researchers found that the nucleus accumbens was also interacting with another region of the brain called the auditory cortical stores.
http://www.clinph-journal.com/article/S1388-2457%2802%2900414-5/abstract?cc=y
Neural plasticity following auditory training in children with learning problems
http://www.clinph-journal.com/article/S1388-2457%2802%2900414-5/abstract?cc=y
EA Hayes, CM Warrier, TG Nicol, SG Zecker… – Clinical …, 2003 – Elsevier
Objective: This study examined the plasticity of the central auditory pathway and
accompanying cognitive changes in children with learning problems. Methods: Children
diagnosed with a learning disability and/or attention deficit disorder worked with …
jslhr.pubs.asha.org/article.aspx?articleid=1780934
Auditory training induces asymmetrical changes in cortical neural activity
KL Tremblay, N Kraus – Journal of Speech, Language, and Hearing …, 2002 – ASHA
Pre-attentive cortical evoked potentials reflect training-induced changes in neural activity
associated with speech-sound training. Seven normal-hearing young adults were trained to
identify two synthetic speech variants of the syllable/ba/. As subjects learned to correctly …
http://ajp.psychiatryonline.org/doi/abs/10.1176/appi.ajp.2009.08050757
Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia
M Fisher, C Holland, M Merzenich… – American Journal of …, 2009 – Am Psychiatric Assoc
Objective: Impaired verbal memory in schizophrenia is a key rate-limiting factor for functional
outcome, does not respond to currently available medications, and shows only modest
improvement after conventional behavioral remediation. The authors investigated an …
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2002-35862
Plasticity, auditory training, and auditory processing disorders
FE Musiek, J Shinn, C Hare – Seminars in hearing, 2002 – thieme-connect.com
Auditory training (AT) for the treatment of auditory processing disorders (APD) has generated considerable interest recently. There is emerging evidence that well conceived AT programs can improve higher auditory function. The plasticity of the brain underlies the success of AT. This article reviews brain plasticity and the role of plasticity in AT outcomes, and highlights key studies that provide insight into the clinical use of AT for APD.
http://journals.lww.com/ear-hearing/Abstract/2001/04000/Central_Auditory_Plasticity__Changes_in_the_N1_P2.1.aspx
PDF]Training-related changes in the brain: evidence from human auditory-evoked potentials
KL Tremblay – Seminars in Hearing, 2007 – researchgate.net
ABSTRACT Auditory-evoked potentials are being used to examine trainingrelated changes
in the human central auditory system, and there is converging evidence that focused
listening training, using various training methods and different types of stimuli alters …
http://jslhr.pubs.asha.org/article.aspx?articleid=1754795
Auditory training and speech discrimination
DL Bode, HJ Oyer – Journal of Speech, Language, and Hearing Research, 1970 – ASHA
Thirty-two adults with sensorineural hearing loss participated in a short-term auditory 
training program. The listeners were assigned to one of four matched groups which were
equivalent in pure-tone sensitivity, speech-reception threshold, PB discrimination in quiet …
http://journals.lww.com/neuroreport/Abstract/2000/03200/Plastic_changes_in_the_auditory_cortex_induced_by.32.aspx
Plastic changes in the auditory cortex induced by intensive frequency discrimination training
Menning, Hans1; Roberts, Larry E.2; Pantev, Christo1,3
Neuroreport:
20 March 2000 – Volume 11 – Issue 4 – p 817–822
Auditory and Vestibular Systems
Abstract
The slow auditory evoked (wave Nlm) and mismatch field (MMF) elicited by sequences of pure tones of 1000 Hz and deviant tones of 1050, 1010 and 1005 Hz were measured before, during and 3 weeks after subjects were trained at frequency discrimination for 15 sessions (over 3 weeks) using an odd-ball procedure. The task of the subject was to detect deviants differing by progressively smaller frequency shifts from the standard stimulus. Frequency discrimination improved rapidly in the first week and was followed by small but constant improvements thereafter. Nlm and MMF responses to the deviant stimuli increased in amplitude during training. This enhancement persisted until training was finished, but decreased 3 weeks later. The results suggest a plastic reorganization of the cortical representation for the trained frequencies.
http://www.sciencedaily.com/releases/2007/03/070307075703.htm
Nerves use sound,not electricity to transmit impulses
2005 Thomas Heimburg & Andrew Jackson:
The impulses in the neural pathways as a mechanical pulse in the form of sound pulses – a local pulse unit, a soliton, which moves concentrated without diffusing, without changing form and without losing power.


 

Sizi Arayalım

Ücretsiz bilgi almanız için sizi arayalım!